MakeItFrom.com
Menu (ESC)

EN AC-48000 Aluminum vs. EN 1.4971 Stainless Steel

EN AC-48000 aluminum belongs to the aluminum alloys classification, while EN 1.4971 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48000 aluminum and the bottom bar is EN 1.4971 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
240
Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 1.0
34
Fatigue Strength, MPa 85 to 86
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
81
Tensile Strength: Ultimate (UTS), MPa 220 to 310
800
Tensile Strength: Yield (Proof), MPa 210 to 270
340

Thermal Properties

Latent Heat of Fusion, J/g 570
300
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 21
15

Otherwise Unclassified Properties

Base Metal Price, % relative 10
70
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 7.9
7.6
Embodied Energy, MJ/kg 140
110
Embodied Water, L/kg 1030
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2 to 3.0
220
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 510
280
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 23 to 33
26
Strength to Weight: Bending, points 31 to 39
23
Thermal Diffusivity, mm2/s 54
3.4
Thermal Shock Resistance, points 10 to 15
19

Alloy Composition

Aluminum (Al), % 80.4 to 87.2
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0.8 to 1.5
0
Iron (Fe), % 0 to 0.7
24.3 to 37.1
Magnesium (Mg), % 0.8 to 1.5
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0.7 to 1.3
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 10.5 to 13.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0