MakeItFrom.com
Menu (ESC)

EN AC-48000 Aluminum vs. CC380H Copper-nickel

EN AC-48000 aluminum belongs to the aluminum alloys classification, while CC380H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48000 aluminum and the bottom bar is CC380H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
80
Elastic (Young's, Tensile) Modulus, GPa 73
120
Elongation at Break, % 1.0
26
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 28
47
Tensile Strength: Ultimate (UTS), MPa 220 to 310
310
Tensile Strength: Yield (Proof), MPa 210 to 270
120

Thermal Properties

Latent Heat of Fusion, J/g 570
220
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 600
1130
Melting Onset (Solidus), °C 560
1080
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 130
46
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
11
Electrical Conductivity: Equal Weight (Specific), % IACS 110
11

Otherwise Unclassified Properties

Base Metal Price, % relative 10
36
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 7.9
3.8
Embodied Energy, MJ/kg 140
58
Embodied Water, L/kg 1030
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2 to 3.0
65
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 510
59
Stiffness to Weight: Axial, points 15
7.8
Stiffness to Weight: Bending, points 53
19
Strength to Weight: Axial, points 23 to 33
9.8
Strength to Weight: Bending, points 31 to 39
12
Thermal Diffusivity, mm2/s 54
13
Thermal Shock Resistance, points 10 to 15
11

Alloy Composition

Aluminum (Al), % 80.4 to 87.2
0 to 0.010
Copper (Cu), % 0.8 to 1.5
84.5 to 89
Iron (Fe), % 0 to 0.7
1.0 to 1.8
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0.8 to 1.5
0
Manganese (Mn), % 0 to 0.35
1.0 to 1.5
Nickel (Ni), % 0.7 to 1.3
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Silicon (Si), % 10.5 to 13.5
0 to 0.1
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0 to 0.5
Residuals, % 0 to 0.15
0