MakeItFrom.com
Menu (ESC)

EN AC-48000 Aluminum vs. Nickel 601

EN AC-48000 aluminum belongs to the aluminum alloys classification, while nickel 601 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48000 aluminum and the bottom bar is nickel 601.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
10 to 38
Fatigue Strength, MPa 85 to 86
220 to 380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Tensile Strength: Ultimate (UTS), MPa 220 to 310
660 to 890
Tensile Strength: Yield (Proof), MPa 210 to 270
290 to 800

Thermal Properties

Latent Heat of Fusion, J/g 570
320
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 600
1410
Melting Onset (Solidus), °C 560
1360
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 21
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
49
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 7.9
8.0
Embodied Energy, MJ/kg 140
110
Embodied Water, L/kg 1030
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2 to 3.0
86 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 510
210 to 1630
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 23 to 33
22 to 30
Strength to Weight: Bending, points 31 to 39
20 to 25
Thermal Diffusivity, mm2/s 54
2.8
Thermal Shock Resistance, points 10 to 15
17 to 23

Alloy Composition

Aluminum (Al), % 80.4 to 87.2
1.0 to 1.7
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
21 to 25
Copper (Cu), % 0.8 to 1.5
0 to 1.0
Iron (Fe), % 0 to 0.7
7.7 to 20
Magnesium (Mg), % 0.8 to 1.5
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 0.7 to 1.3
58 to 63
Silicon (Si), % 10.5 to 13.5
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0