MakeItFrom.com
Menu (ESC)

EN AC-48100 Aluminum vs. 4015 Aluminum

Both EN AC-48100 aluminum and 4015 aluminum are aluminum alloys. They have 79% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-48100 aluminum and the bottom bar is 4015 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 140
35 to 70
Elastic (Young's, Tensile) Modulus, GPa 76
70
Elongation at Break, % 1.1
1.1 to 23
Fatigue Strength, MPa 120 to 130
46 to 71
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 29
26
Tensile Strength: Ultimate (UTS), MPa 240 to 330
130 to 220
Tensile Strength: Yield (Proof), MPa 190 to 300
50 to 200

Thermal Properties

Latent Heat of Fusion, J/g 640
420
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 580
640
Melting Onset (Solidus), °C 470
600
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 130
160
Thermal Expansion, µm/m-K 20
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
41
Electrical Conductivity: Equal Weight (Specific), % IACS 87
130

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 7.3
8.1
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 940
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 3.6
2.4 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
18 to 290
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 24 to 33
13 to 22
Strength to Weight: Bending, points 31 to 38
21 to 30
Thermal Diffusivity, mm2/s 55
66
Thermal Shock Resistance, points 11 to 16
5.7 to 9.7

Alloy Composition

Aluminum (Al), % 72.1 to 79.8
94.9 to 97.9
Copper (Cu), % 4.0 to 5.0
0 to 0.2
Iron (Fe), % 0 to 1.3
0 to 0.7
Magnesium (Mg), % 0.25 to 0.65
0.1 to 0.5
Manganese (Mn), % 0 to 0.5
0.6 to 1.2
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 16 to 18
1.4 to 2.2
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.5
0 to 0.2
Residuals, % 0
0 to 0.15