MakeItFrom.com
Menu (ESC)

EN AC-48100 Aluminum vs. 513.0 Aluminum

Both EN AC-48100 aluminum and 513.0 aluminum are aluminum alloys. They have 78% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-48100 aluminum and the bottom bar is 513.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 140
55
Elastic (Young's, Tensile) Modulus, GPa 76
68
Elongation at Break, % 1.1
5.7
Fatigue Strength, MPa 120 to 130
97
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 29
26
Tensile Strength: Ultimate (UTS), MPa 240 to 330
200
Tensile Strength: Yield (Proof), MPa 190 to 300
120

Thermal Properties

Latent Heat of Fusion, J/g 640
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 580
640
Melting Onset (Solidus), °C 470
590
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
34
Electrical Conductivity: Equal Weight (Specific), % IACS 87
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 7.3
8.8
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 940
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 3.6
9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
100
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 24 to 33
20
Strength to Weight: Bending, points 31 to 38
28
Thermal Diffusivity, mm2/s 55
54
Thermal Shock Resistance, points 11 to 16
8.8

Alloy Composition

Aluminum (Al), % 72.1 to 79.8
91.9 to 95.1
Copper (Cu), % 4.0 to 5.0
0 to 0.1
Iron (Fe), % 0 to 1.3
0 to 0.4
Magnesium (Mg), % 0.25 to 0.65
3.5 to 4.5
Manganese (Mn), % 0 to 0.5
0 to 0.3
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 16 to 18
0 to 0.3
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 1.5
1.4 to 2.2
Residuals, % 0
0 to 0.15