MakeItFrom.com
Menu (ESC)

EN AC-48100 Aluminum vs. ASTM A387 Grade 2 Steel

EN AC-48100 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 2 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48100 aluminum and the bottom bar is ASTM A387 grade 2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 140
140 to 170
Elastic (Young's, Tensile) Modulus, GPa 76
190
Elongation at Break, % 1.1
25
Fatigue Strength, MPa 120 to 130
190 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 29
73
Tensile Strength: Ultimate (UTS), MPa 240 to 330
470 to 550
Tensile Strength: Yield (Proof), MPa 190 to 300
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 640
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 580
1470
Melting Onset (Solidus), °C 470
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
45
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 87
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.6
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 7.3
1.6
Embodied Energy, MJ/kg 130
20
Embodied Water, L/kg 940
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 3.6
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
180 to 320
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 24 to 33
16 to 20
Strength to Weight: Bending, points 31 to 38
17 to 19
Thermal Diffusivity, mm2/s 55
12
Thermal Shock Resistance, points 11 to 16
14 to 16

Alloy Composition

Aluminum (Al), % 72.1 to 79.8
0
Carbon (C), % 0
0.050 to 0.21
Chromium (Cr), % 0
0.5 to 0.8
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.3
97.1 to 98.3
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0 to 0.5
0.55 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.6
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 16 to 18
0.15 to 0.4
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.25
0