MakeItFrom.com
Menu (ESC)

EN AC-48100 Aluminum vs. EN 1.4971 Stainless Steel

EN AC-48100 aluminum belongs to the aluminum alloys classification, while EN 1.4971 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48100 aluminum and the bottom bar is EN 1.4971 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 140
240
Elastic (Young's, Tensile) Modulus, GPa 76
210
Elongation at Break, % 1.1
34
Fatigue Strength, MPa 120 to 130
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 29
81
Tensile Strength: Ultimate (UTS), MPa 240 to 330
800
Tensile Strength: Yield (Proof), MPa 190 to 300
340

Thermal Properties

Latent Heat of Fusion, J/g 640
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 580
1460
Melting Onset (Solidus), °C 470
1410
Specific Heat Capacity, J/kg-K 880
450
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 20
15

Otherwise Unclassified Properties

Base Metal Price, % relative 11
70
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 7.3
7.6
Embodied Energy, MJ/kg 130
110
Embodied Water, L/kg 940
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 3.6
220
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
280
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 24 to 33
26
Strength to Weight: Bending, points 31 to 38
23
Thermal Diffusivity, mm2/s 55
3.4
Thermal Shock Resistance, points 11 to 16
19

Alloy Composition

Aluminum (Al), % 72.1 to 79.8
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.3
24.3 to 37.1
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 0.3
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 16 to 18
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.25
0