MakeItFrom.com
Menu (ESC)

EN AC-48100 Aluminum vs. Nickel 686

EN AC-48100 aluminum belongs to the aluminum alloys classification, while nickel 686 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48100 aluminum and the bottom bar is nickel 686.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 76
220
Elongation at Break, % 1.1
51
Fatigue Strength, MPa 120 to 130
410
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 29
77
Tensile Strength: Ultimate (UTS), MPa 240 to 330
780
Tensile Strength: Yield (Proof), MPa 190 to 300
350

Thermal Properties

Latent Heat of Fusion, J/g 640
320
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 580
1380
Melting Onset (Solidus), °C 470
1340
Specific Heat Capacity, J/kg-K 880
420
Thermal Conductivity, W/m-K 130
9.8
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 87
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
70
Density, g/cm3 2.8
9.0
Embodied Carbon, kg CO2/kg material 7.3
12
Embodied Energy, MJ/kg 130
170
Embodied Water, L/kg 940
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 3.6
320
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
280
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
22
Strength to Weight: Axial, points 24 to 33
24
Strength to Weight: Bending, points 31 to 38
21
Thermal Diffusivity, mm2/s 55
2.6
Thermal Shock Resistance, points 11 to 16
21

Alloy Composition

Aluminum (Al), % 72.1 to 79.8
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.3
0 to 5.0
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0 to 0.5
0 to 0.75
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0 to 0.3
49.5 to 63
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 16 to 18
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0.020 to 0.25
Tungsten (W), % 0
3.0 to 4.4
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.25
0