MakeItFrom.com
Menu (ESC)

EN AC-48100 Aluminum vs. C19020 Copper

EN AC-48100 aluminum belongs to the aluminum alloys classification, while C19020 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48100 aluminum and the bottom bar is C19020 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 76
120
Elongation at Break, % 1.1
2.3 to 5.7
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 29
44
Tensile Strength: Ultimate (UTS), MPa 240 to 330
440 to 590

Thermal Properties

Latent Heat of Fusion, J/g 640
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 580
1090
Melting Onset (Solidus), °C 470
1030
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 130
190
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
50
Electrical Conductivity: Equal Weight (Specific), % IACS 87
50

Otherwise Unclassified Properties

Base Metal Price, % relative 11
31
Density, g/cm3 2.8
8.9
Embodied Carbon, kg CO2/kg material 7.3
2.8
Embodied Energy, MJ/kg 130
44
Embodied Water, L/kg 940
310

Common Calculations

Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 24 to 33
14 to 18
Strength to Weight: Bending, points 31 to 38
14 to 18
Thermal Diffusivity, mm2/s 55
55
Thermal Shock Resistance, points 11 to 16
16 to 21

Alloy Composition

Aluminum (Al), % 72.1 to 79.8
0
Copper (Cu), % 4.0 to 5.0
95.7 to 99.19
Iron (Fe), % 0 to 1.3
0
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.3
0.5 to 3.0
Phosphorus (P), % 0
0.010 to 0.2
Silicon (Si), % 16 to 18
0
Tin (Sn), % 0 to 0.15
0.3 to 0.9
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0
0 to 0.2