MakeItFrom.com
Menu (ESC)

EN AC-48100 Aluminum vs. C95200 Bronze

EN AC-48100 aluminum belongs to the aluminum alloys classification, while C95200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48100 aluminum and the bottom bar is C95200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 140
120
Elastic (Young's, Tensile) Modulus, GPa 76
110
Elongation at Break, % 1.1
29
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 29
42
Tensile Strength: Ultimate (UTS), MPa 240 to 330
520
Tensile Strength: Yield (Proof), MPa 190 to 300
190

Thermal Properties

Latent Heat of Fusion, J/g 640
230
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 580
1050
Melting Onset (Solidus), °C 470
1040
Specific Heat Capacity, J/kg-K 880
430
Thermal Conductivity, W/m-K 130
50
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
11
Electrical Conductivity: Equal Weight (Specific), % IACS 87
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
28
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 7.3
3.0
Embodied Energy, MJ/kg 130
50
Embodied Water, L/kg 940
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 3.6
120
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
170
Stiffness to Weight: Axial, points 15
7.6
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 24 to 33
17
Strength to Weight: Bending, points 31 to 38
17
Thermal Diffusivity, mm2/s 55
14
Thermal Shock Resistance, points 11 to 16
19

Alloy Composition

Aluminum (Al), % 72.1 to 79.8
8.5 to 9.5
Copper (Cu), % 4.0 to 5.0
86 to 89
Iron (Fe), % 0 to 1.3
2.5 to 4.0
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 16 to 18
0
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0
0 to 1.0