MakeItFrom.com
Menu (ESC)

EN AC-48100 Aluminum vs. N06110 Nickel

EN AC-48100 aluminum belongs to the aluminum alloys classification, while N06110 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48100 aluminum and the bottom bar is N06110 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 76
210
Elongation at Break, % 1.1
53
Fatigue Strength, MPa 120 to 130
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 29
84
Tensile Strength: Ultimate (UTS), MPa 240 to 330
730
Tensile Strength: Yield (Proof), MPa 190 to 300
330

Thermal Properties

Latent Heat of Fusion, J/g 640
340
Maximum Temperature: Mechanical, °C 170
1020
Melting Completion (Liquidus), °C 580
1490
Melting Onset (Solidus), °C 470
1440
Specific Heat Capacity, J/kg-K 880
440
Thermal Expansion, µm/m-K 20
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
65
Density, g/cm3 2.8
8.6
Embodied Carbon, kg CO2/kg material 7.3
11
Embodied Energy, MJ/kg 130
160
Embodied Water, L/kg 940
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 3.6
320
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
260
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 24 to 33
23
Strength to Weight: Bending, points 31 to 38
21
Thermal Shock Resistance, points 11 to 16
20

Alloy Composition

Aluminum (Al), % 72.1 to 79.8
0 to 1.0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
28 to 33
Copper (Cu), % 4.0 to 5.0
0 to 0.5
Iron (Fe), % 0 to 1.3
0 to 1.0
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 12
Nickel (Ni), % 0 to 0.3
51 to 62
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.5
Silicon (Si), % 16 to 18
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 1.0
Tungsten (W), % 0
1.0 to 4.0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.25
0