MakeItFrom.com
Menu (ESC)

EN AC-48100 Aluminum vs. N08120 Nickel

EN AC-48100 aluminum belongs to the aluminum alloys classification, while N08120 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48100 aluminum and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 76
200
Elongation at Break, % 1.1
34
Fatigue Strength, MPa 120 to 130
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 29
79
Tensile Strength: Ultimate (UTS), MPa 240 to 330
700
Tensile Strength: Yield (Proof), MPa 190 to 300
310

Thermal Properties

Latent Heat of Fusion, J/g 640
310
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 580
1420
Melting Onset (Solidus), °C 470
1370
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 20
14

Otherwise Unclassified Properties

Base Metal Price, % relative 11
45
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 7.3
7.2
Embodied Energy, MJ/kg 130
100
Embodied Water, L/kg 940
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 3.6
190
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
240
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 24 to 33
24
Strength to Weight: Bending, points 31 to 38
21
Thermal Diffusivity, mm2/s 55
3.0
Thermal Shock Resistance, points 11 to 16
17

Alloy Composition

Aluminum (Al), % 72.1 to 79.8
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 4.0 to 5.0
0 to 0.5
Iron (Fe), % 0 to 1.3
21 to 41.4
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 0 to 0.3
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 16 to 18
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.25
0