MakeItFrom.com
Menu (ESC)

EN AC-48100 Aluminum vs. S30615 Stainless Steel

EN AC-48100 aluminum belongs to the aluminum alloys classification, while S30615 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48100 aluminum and the bottom bar is S30615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 140
190
Elastic (Young's, Tensile) Modulus, GPa 76
190
Elongation at Break, % 1.1
39
Fatigue Strength, MPa 120 to 130
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 29
75
Tensile Strength: Ultimate (UTS), MPa 240 to 330
690
Tensile Strength: Yield (Proof), MPa 190 to 300
310

Thermal Properties

Latent Heat of Fusion, J/g 640
340
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 580
1370
Melting Onset (Solidus), °C 470
1320
Specific Heat Capacity, J/kg-K 880
500
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 20
16

Otherwise Unclassified Properties

Base Metal Price, % relative 11
19
Density, g/cm3 2.8
7.6
Embodied Carbon, kg CO2/kg material 7.3
3.7
Embodied Energy, MJ/kg 130
53
Embodied Water, L/kg 940
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 3.6
220
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
260
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 24 to 33
25
Strength to Weight: Bending, points 31 to 38
23
Thermal Diffusivity, mm2/s 55
3.7
Thermal Shock Resistance, points 11 to 16
16

Alloy Composition

Aluminum (Al), % 72.1 to 79.8
0.8 to 1.5
Carbon (C), % 0
0.16 to 0.24
Chromium (Cr), % 0
17 to 19.5
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.3
56.7 to 65.3
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Nickel (Ni), % 0 to 0.3
13.5 to 16
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 16 to 18
3.2 to 4.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.25
0