MakeItFrom.com
Menu (ESC)

EN AC-48100 Aluminum vs. S40945 Stainless Steel

EN AC-48100 aluminum belongs to the aluminum alloys classification, while S40945 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48100 aluminum and the bottom bar is S40945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 140
160
Elastic (Young's, Tensile) Modulus, GPa 76
190
Elongation at Break, % 1.1
25
Fatigue Strength, MPa 120 to 130
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 29
75
Tensile Strength: Ultimate (UTS), MPa 240 to 330
430
Tensile Strength: Yield (Proof), MPa 190 to 300
230

Thermal Properties

Latent Heat of Fusion, J/g 640
270
Maximum Temperature: Mechanical, °C 170
710
Melting Completion (Liquidus), °C 580
1450
Melting Onset (Solidus), °C 470
1410
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 87
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
8.0
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.3
2.2
Embodied Energy, MJ/kg 130
31
Embodied Water, L/kg 940
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 3.6
89
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 24 to 33
15
Strength to Weight: Bending, points 31 to 38
16
Thermal Diffusivity, mm2/s 55
6.9
Thermal Shock Resistance, points 11 to 16
15

Alloy Composition

Aluminum (Al), % 72.1 to 79.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.3
85.1 to 89.3
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 0.3
0 to 0.5
Niobium (Nb), % 0
0.18 to 0.4
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 16 to 18
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0.050 to 0.2
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.25
0