MakeItFrom.com
Menu (ESC)

EN AC-48100 Aluminum vs. S44635 Stainless Steel

EN AC-48100 aluminum belongs to the aluminum alloys classification, while S44635 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48100 aluminum and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 140
240
Elastic (Young's, Tensile) Modulus, GPa 76
210
Elongation at Break, % 1.1
23
Fatigue Strength, MPa 120 to 130
390
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 29
81
Tensile Strength: Ultimate (UTS), MPa 240 to 330
710
Tensile Strength: Yield (Proof), MPa 190 to 300
580

Thermal Properties

Latent Heat of Fusion, J/g 640
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 580
1460
Melting Onset (Solidus), °C 470
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 87
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
22
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.3
4.4
Embodied Energy, MJ/kg 130
62
Embodied Water, L/kg 940
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 3.6
150
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
810
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 24 to 33
25
Strength to Weight: Bending, points 31 to 38
23
Thermal Diffusivity, mm2/s 55
4.4
Thermal Shock Resistance, points 11 to 16
23

Alloy Composition

Aluminum (Al), % 72.1 to 79.8
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
24.5 to 26
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.3
61.5 to 68.5
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0 to 0.3
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 16 to 18
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0.2 to 0.8
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.25
0