MakeItFrom.com
Menu (ESC)

EN AC-51100 Aluminum vs. 6070 Aluminum

Both EN AC-51100 aluminum and 6070 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-51100 aluminum and the bottom bar is 6070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 4.5
5.6 to 8.6
Fatigue Strength, MPa 58
95 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 160
370 to 380
Tensile Strength: Yield (Proof), MPa 80
350

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 620
570
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
160
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
41
Electrical Conductivity: Equal Weight (Specific), % IACS 110
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.7
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0
20 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 47
880 to 900
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 17
38
Strength to Weight: Bending, points 25
42 to 43
Thermal Diffusivity, mm2/s 53
65
Thermal Shock Resistance, points 7.3
16 to 17

Alloy Composition

Aluminum (Al), % 94.5 to 97.5
94.6 to 98
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.050
0.15 to 0.4
Iron (Fe), % 0 to 0.55
0 to 0.5
Magnesium (Mg), % 2.5 to 3.5
0.5 to 1.2
Manganese (Mn), % 0 to 0.45
0.4 to 1.0
Silicon (Si), % 0 to 0.55
1.0 to 1.7
Titanium (Ti), % 0 to 0.2
0 to 0.15
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0
0 to 0.15