MakeItFrom.com
Menu (ESC)

EN AC-51100 Aluminum vs. SAE-AISI F2 Steel

EN AC-51100 aluminum belongs to the aluminum alloys classification, while SAE-AISI F2 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51100 aluminum and the bottom bar is SAE-AISI F2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 160
710 to 2360

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Melting Completion (Liquidus), °C 640
1520
Melting Onset (Solidus), °C 620
1470
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 130
42
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.7
2.3
Embodied Energy, MJ/kg 150
32
Embodied Water, L/kg 1180
50

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 17
24 to 81
Strength to Weight: Bending, points 25
22 to 49
Thermal Diffusivity, mm2/s 53
11
Thermal Shock Resistance, points 7.3
21 to 71

Alloy Composition

Aluminum (Al), % 94.5 to 97.5
0
Carbon (C), % 0
1.2 to 1.4
Chromium (Cr), % 0
0.2 to 0.4
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.55
92.6 to 95.4
Magnesium (Mg), % 2.5 to 3.5
0
Manganese (Mn), % 0 to 0.45
0.1 to 0.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.55
0.1 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
3.0 to 4.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0