MakeItFrom.com
Menu (ESC)

EN AC-51100 Aluminum vs. C10700 Copper

EN AC-51100 aluminum belongs to the aluminum alloys classification, while C10700 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51100 aluminum and the bottom bar is C10700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 4.5
2.2 to 50
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 160
230 to 410
Tensile Strength: Yield (Proof), MPa 80
77 to 410

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 640
1080
Melting Onset (Solidus), °C 620
1080
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 130
390
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
100
Electrical Conductivity: Equal Weight (Specific), % IACS 110
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
35
Density, g/cm3 2.7
9.0
Embodied Carbon, kg CO2/kg material 8.7
2.7
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1180
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0
7.9 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 47
25 to 710
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 17
7.2 to 13
Strength to Weight: Bending, points 25
9.4 to 14
Thermal Diffusivity, mm2/s 53
110
Thermal Shock Resistance, points 7.3
8.2 to 15

Alloy Composition

Aluminum (Al), % 94.5 to 97.5
0
Copper (Cu), % 0 to 0.050
99.83 to 99.915
Iron (Fe), % 0 to 0.55
0
Magnesium (Mg), % 2.5 to 3.5
0
Manganese (Mn), % 0 to 0.45
0
Oxygen (O), % 0
0 to 0.0010
Silicon (Si), % 0 to 0.55
0
Silver (Ag), % 0
0.085 to 0.12
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.050