MakeItFrom.com
Menu (ESC)

EN AC-51100 Aluminum vs. N06110 Nickel

EN AC-51100 aluminum belongs to the aluminum alloys classification, while N06110 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51100 aluminum and the bottom bar is N06110 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 4.5
53
Fatigue Strength, MPa 58
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
84
Tensile Strength: Ultimate (UTS), MPa 160
730
Tensile Strength: Yield (Proof), MPa 80
330

Thermal Properties

Latent Heat of Fusion, J/g 400
340
Maximum Temperature: Mechanical, °C 170
1020
Melting Completion (Liquidus), °C 640
1490
Melting Onset (Solidus), °C 620
1440
Specific Heat Capacity, J/kg-K 900
440
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 8.7
11
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0
320
Resilience: Unit (Modulus of Resilience), kJ/m3 47
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 17
23
Strength to Weight: Bending, points 25
21
Thermal Shock Resistance, points 7.3
20

Alloy Composition

Aluminum (Al), % 94.5 to 97.5
0 to 1.0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
28 to 33
Copper (Cu), % 0 to 0.050
0 to 0.5
Iron (Fe), % 0 to 0.55
0 to 1.0
Magnesium (Mg), % 2.5 to 3.5
0
Manganese (Mn), % 0 to 0.45
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 12
Nickel (Ni), % 0
51 to 62
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.5
Silicon (Si), % 0 to 0.55
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0 to 1.0
Tungsten (W), % 0
1.0 to 4.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0