MakeItFrom.com
Menu (ESC)

EN AC-51200 Aluminum vs. 772.0 Aluminum

Both EN AC-51200 aluminum and 772.0 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-51200 aluminum and the bottom bar is 772.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
69
Elongation at Break, % 1.1
6.3 to 8.4
Fatigue Strength, MPa 100
94 to 160
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 25
26
Tensile Strength: Ultimate (UTS), MPa 220
260 to 320
Tensile Strength: Yield (Proof), MPa 150
220 to 250

Thermal Properties

Latent Heat of Fusion, J/g 410
380
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 570
580
Specific Heat Capacity, J/kg-K 910
870
Thermal Conductivity, W/m-K 92
150
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
35
Electrical Conductivity: Equal Weight (Specific), % IACS 74
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
3.0
Embodied Carbon, kg CO2/kg material 9.6
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
16 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 160
350 to 430
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
46
Strength to Weight: Axial, points 24
25 to 31
Strength to Weight: Bending, points 31
31 to 36
Thermal Diffusivity, mm2/s 39
58
Thermal Shock Resistance, points 10
11 to 14

Alloy Composition

Aluminum (Al), % 84.5 to 92
91.2 to 93.2
Chromium (Cr), % 0
0.060 to 0.2
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 1.0
0 to 0.15
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 8.0 to 10.5
0.6 to 0.8
Manganese (Mn), % 0 to 0.55
0 to 0.1
Nickel (Ni), % 0 to 0.1
0
Silicon (Si), % 0 to 2.5
0 to 0.15
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0.1 to 0.2
Zinc (Zn), % 0 to 0.25
6.0 to 7.0
Residuals, % 0
0 to 0.15