MakeItFrom.com
Menu (ESC)

EN AC-51200 Aluminum vs. Grade CW6M Nickel

EN AC-51200 aluminum belongs to the aluminum alloys classification, while grade CW6M nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51200 aluminum and the bottom bar is grade CW6M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
220
Elongation at Break, % 1.1
29
Fatigue Strength, MPa 100
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
84
Tensile Strength: Ultimate (UTS), MPa 220
560
Tensile Strength: Yield (Proof), MPa 150
310

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 170
970
Melting Completion (Liquidus), °C 640
1530
Melting Onset (Solidus), °C 570
1470
Specific Heat Capacity, J/kg-K 910
430
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 2.6
8.8
Embodied Carbon, kg CO2/kg material 9.6
13
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
140
Resilience: Unit (Modulus of Resilience), kJ/m3 160
220
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 24
18
Strength to Weight: Bending, points 31
17
Thermal Shock Resistance, points 10
16

Alloy Composition

Aluminum (Al), % 84.5 to 92
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 1.0
0 to 3.0
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 8.0 to 10.5
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Molybdenum (Mo), % 0
17 to 20
Nickel (Ni), % 0 to 0.1
54.9 to 66
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 2.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0