MakeItFrom.com
Menu (ESC)

EN AC-51200 Aluminum vs. Grade TDC Steel

EN AC-51200 aluminum belongs to the aluminum alloys classification, while grade TDC steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51200 aluminum and the bottom bar is grade TDC steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
510
Elastic (Young's, Tensile) Modulus, GPa 67
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
80
Tensile Strength: Ultimate (UTS), MPa 220
1700

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 92
51
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 74
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.6
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1150
47

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 24
60
Strength to Weight: Bending, points 31
40
Thermal Diffusivity, mm2/s 39
14
Thermal Shock Resistance, points 10
50

Alloy Composition

Aluminum (Al), % 84.5 to 92
0
Carbon (C), % 0
0.6 to 0.75
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 1.0
98 to 99.4
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 8.0 to 10.5
0
Manganese (Mn), % 0 to 0.55
0.5 to 1.2
Nickel (Ni), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 2.5
0.1 to 0.35
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0