MakeItFrom.com
Menu (ESC)

EN AC-51200 Aluminum vs. ISO-WD32350 Magnesium

EN AC-51200 aluminum belongs to the aluminum alloys classification, while ISO-WD32350 magnesium belongs to the magnesium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-51200 aluminum and the bottom bar is ISO-WD32350 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
45
Elongation at Break, % 1.1
5.7 to 10
Fatigue Strength, MPa 100
120 to 130
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
18
Tensile Strength: Ultimate (UTS), MPa 220
250 to 290
Tensile Strength: Yield (Proof), MPa 150
140 to 180

Thermal Properties

Latent Heat of Fusion, J/g 410
340
Maximum Temperature: Mechanical, °C 170
95
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 570
560
Specific Heat Capacity, J/kg-K 910
990
Thermal Conductivity, W/m-K 92
130
Thermal Expansion, µm/m-K 23
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
25
Electrical Conductivity: Equal Weight (Specific), % IACS 74
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.6
1.7
Embodied Carbon, kg CO2/kg material 9.6
23
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
960

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
14 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 160
210 to 380
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
68
Strength to Weight: Axial, points 24
39 to 46
Strength to Weight: Bending, points 31
50 to 55
Thermal Diffusivity, mm2/s 39
73
Thermal Shock Resistance, points 10
16 to 18

Alloy Composition

Aluminum (Al), % 84.5 to 92
0 to 0.1
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 1.0
0 to 0.060
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 8.0 to 10.5
95.7 to 97.7
Manganese (Mn), % 0 to 0.55
0.6 to 1.3
Nickel (Ni), % 0 to 0.1
0 to 0.0050
Silicon (Si), % 0 to 2.5
0 to 0.1
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
1.8 to 2.3
Residuals, % 0
0 to 0.3