MakeItFrom.com
Menu (ESC)

EN AC-51200 Aluminum vs. N08026 Nickel

EN AC-51200 aluminum belongs to the aluminum alloys classification, while N08026 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51200 aluminum and the bottom bar is N08026 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 1.1
34
Fatigue Strength, MPa 100
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
80
Tensile Strength: Ultimate (UTS), MPa 220
620
Tensile Strength: Yield (Proof), MPa 150
270

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 570
1380
Specific Heat Capacity, J/kg-K 910
460
Thermal Conductivity, W/m-K 92
12
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 74
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
41
Density, g/cm3 2.6
8.2
Embodied Carbon, kg CO2/kg material 9.6
7.2
Embodied Energy, MJ/kg 150
98
Embodied Water, L/kg 1150
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
170
Resilience: Unit (Modulus of Resilience), kJ/m3 160
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 24
21
Strength to Weight: Bending, points 31
20
Thermal Diffusivity, mm2/s 39
3.2
Thermal Shock Resistance, points 10
15

Alloy Composition

Aluminum (Al), % 84.5 to 92
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 26
Copper (Cu), % 0 to 0.1
2.0 to 4.0
Iron (Fe), % 0 to 1.0
24.4 to 37.9
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 8.0 to 10.5
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 6.7
Nickel (Ni), % 0 to 0.1
33 to 37.2
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 2.5
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0