MakeItFrom.com
Menu (ESC)

EN AC-51200 Aluminum vs. N08120 Nickel

EN AC-51200 aluminum belongs to the aluminum alloys classification, while N08120 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51200 aluminum and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 1.1
34
Fatigue Strength, MPa 100
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
79
Tensile Strength: Ultimate (UTS), MPa 220
700
Tensile Strength: Yield (Proof), MPa 150
310

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 570
1370
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 92
11
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
45
Density, g/cm3 2.6
8.2
Embodied Carbon, kg CO2/kg material 9.6
7.2
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1150
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
190
Resilience: Unit (Modulus of Resilience), kJ/m3 160
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 24
24
Strength to Weight: Bending, points 31
21
Thermal Diffusivity, mm2/s 39
3.0
Thermal Shock Resistance, points 10
17

Alloy Composition

Aluminum (Al), % 84.5 to 92
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0 to 0.1
0 to 0.5
Iron (Fe), % 0 to 1.0
21 to 41.4
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 8.0 to 10.5
0
Manganese (Mn), % 0 to 0.55
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 0 to 0.1
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 2.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0