MakeItFrom.com
Menu (ESC)

EN AC-51200 Aluminum vs. N10001 Nickel

EN AC-51200 aluminum belongs to the aluminum alloys classification, while N10001 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51200 aluminum and the bottom bar is N10001 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
220
Elongation at Break, % 1.1
45
Fatigue Strength, MPa 100
300
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 25
84
Tensile Strength: Ultimate (UTS), MPa 220
780
Tensile Strength: Yield (Proof), MPa 150
350

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 640
1620
Melting Onset (Solidus), °C 570
1570
Specific Heat Capacity, J/kg-K 910
390
Thermal Expansion, µm/m-K 23
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.6
9.2
Embodied Carbon, kg CO2/kg material 9.6
15
Embodied Energy, MJ/kg 150
200
Embodied Water, L/kg 1150
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
290
Resilience: Unit (Modulus of Resilience), kJ/m3 160
280
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
22
Strength to Weight: Axial, points 24
24
Strength to Weight: Bending, points 31
21
Thermal Shock Resistance, points 10
25

Alloy Composition

Aluminum (Al), % 84.5 to 92
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 1.0
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 1.0
4.0 to 6.0
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 8.0 to 10.5
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0 to 0.1
58 to 69.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 2.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.2 to 0.4
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0