MakeItFrom.com
Menu (ESC)

EN AC-51200 Aluminum vs. S46500 Stainless Steel

EN AC-51200 aluminum belongs to the aluminum alloys classification, while S46500 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51200 aluminum and the bottom bar is S46500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 1.1
2.3 to 14
Fatigue Strength, MPa 100
550 to 890
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
75
Tensile Strength: Ultimate (UTS), MPa 220
1260 to 1930
Tensile Strength: Yield (Proof), MPa 150
1120 to 1810

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 170
780
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 910
470
Thermal Expansion, µm/m-K 23
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 9.6
3.6
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1150
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
43 to 210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 24
44 to 68
Strength to Weight: Bending, points 31
33 to 44
Thermal Shock Resistance, points 10
44 to 67

Alloy Composition

Aluminum (Al), % 84.5 to 92
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 1.0
72.6 to 76.1
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 8.0 to 10.5
0
Manganese (Mn), % 0 to 0.55
0 to 0.25
Molybdenum (Mo), % 0
0.75 to 1.3
Nickel (Ni), % 0 to 0.1
10.7 to 11.3
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 2.5
0 to 0.25
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
1.5 to 1.8
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0