MakeItFrom.com
Menu (ESC)

EN AC-51300 Aluminum vs. A356.0 Aluminum

Both EN AC-51300 aluminum and A356.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-51300 aluminum and the bottom bar is A356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
70
Elongation at Break, % 3.7
3.0 to 6.0
Fatigue Strength, MPa 78
50 to 90
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Tensile Strength: Ultimate (UTS), MPa 190
160 to 270
Tensile Strength: Yield (Proof), MPa 110
83 to 200

Thermal Properties

Latent Heat of Fusion, J/g 400
500
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 600
570
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 110
150
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
40
Electrical Conductivity: Equal Weight (Specific), % IACS 100
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 9.1
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
4.8 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 87
49 to 300
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
53
Strength to Weight: Axial, points 20
17 to 29
Strength to Weight: Bending, points 28
25 to 36
Thermal Diffusivity, mm2/s 45
64
Thermal Shock Resistance, points 8.6
7.6 to 13

Alloy Composition

Aluminum (Al), % 91.4 to 95.5
91.1 to 93.3
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.55
0 to 0.2
Magnesium (Mg), % 4.5 to 6.5
0.25 to 0.45
Manganese (Mn), % 0 to 0.45
0 to 0.1
Silicon (Si), % 0 to 0.55
6.5 to 7.5
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0
0 to 0.15