MakeItFrom.com
Menu (ESC)

EN AC-51300 Aluminum vs. C55181 Copper

EN AC-51300 aluminum belongs to the aluminum alloys classification, while C55181 copper belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51300 aluminum and the bottom bar is C55181 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
110
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
40
Tensile Strength: Ultimate (UTS), MPa 190
200

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 640
790
Melting Onset (Solidus), °C 600
710
Specific Heat Capacity, J/kg-K 910
410
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 9.1
2.4
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1180
290

Common Calculations

Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 20
6.5
Strength to Weight: Bending, points 28
8.9
Thermal Shock Resistance, points 8.6
8.2

Alloy Composition

Aluminum (Al), % 91.4 to 95.5
0
Copper (Cu), % 0 to 0.1
92.4 to 93
Iron (Fe), % 0 to 0.55
0
Magnesium (Mg), % 4.5 to 6.5
0
Manganese (Mn), % 0 to 0.45
0
Phosphorus (P), % 0
7.0 to 7.5
Silicon (Si), % 0 to 0.55
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.15