MakeItFrom.com
Menu (ESC)

EN AC-51400 Aluminum vs. 6014 Aluminum

Both EN AC-51400 aluminum and 6014 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-51400 aluminum and the bottom bar is 6014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
69
Elongation at Break, % 3.4
9.1 to 17
Fatigue Strength, MPa 85
43 to 79
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Tensile Strength: Ultimate (UTS), MPa 190
160 to 260
Tensile Strength: Yield (Proof), MPa 120
80 to 200

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 600
620
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 110
200
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
53
Electrical Conductivity: Equal Weight (Specific), % IACS 110
180

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 9.1
8.6
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1170
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
22
Resilience: Unit (Modulus of Resilience), kJ/m3 110
46 to 300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 20
16 to 26
Strength to Weight: Bending, points 28
24 to 33
Thermal Diffusivity, mm2/s 46
83
Thermal Shock Resistance, points 8.6
7.0 to 11

Alloy Composition

Aluminum (Al), % 90.5 to 95.5
97.1 to 99.2
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0 to 0.050
0 to 0.25
Iron (Fe), % 0 to 0.55
0 to 0.35
Magnesium (Mg), % 4.5 to 6.5
0.4 to 0.8
Manganese (Mn), % 0 to 0.45
0.050 to 0.2
Silicon (Si), % 0 to 1.5
0.3 to 0.6
Titanium (Ti), % 0 to 0.2
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0
0 to 0.15