MakeItFrom.com
Menu (ESC)

EN AC-51400 Aluminum vs. 6262A Aluminum

Both EN AC-51400 aluminum and 6262A aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-51400 aluminum and the bottom bar is 6262A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
68
Elongation at Break, % 3.4
4.5 to 11
Fatigue Strength, MPa 85
94 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Tensile Strength: Ultimate (UTS), MPa 190
310 to 410
Tensile Strength: Yield (Proof), MPa 120
270 to 370

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 600
580
Specific Heat Capacity, J/kg-K 910
890
Thermal Conductivity, W/m-K 110
170
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
45
Electrical Conductivity: Equal Weight (Specific), % IACS 110
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 9.1
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 110
540 to 1000
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
49
Strength to Weight: Axial, points 20
31 to 41
Strength to Weight: Bending, points 28
36 to 44
Thermal Diffusivity, mm2/s 46
67
Thermal Shock Resistance, points 8.6
14 to 18

Alloy Composition

Aluminum (Al), % 90.5 to 95.5
94.2 to 97.8
Bismuth (Bi), % 0
0.4 to 0.9
Chromium (Cr), % 0
0.040 to 0.14
Copper (Cu), % 0 to 0.050
0.15 to 0.4
Iron (Fe), % 0 to 0.55
0 to 0.7
Magnesium (Mg), % 4.5 to 6.5
0.8 to 1.2
Manganese (Mn), % 0 to 0.45
0 to 0.15
Silicon (Si), % 0 to 1.5
0.4 to 0.8
Tin (Sn), % 0
0.4 to 1.0
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0
0 to 0.15