MakeItFrom.com
Menu (ESC)

EN AC-51400 Aluminum vs. ACI-ASTM CB30 Steel

EN AC-51400 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CB30 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51400 aluminum and the bottom bar is ACI-ASTM CB30 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 71
210
Elastic (Young's, Tensile) Modulus, GPa 67
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Tensile Strength: Ultimate (UTS), MPa 190
500
Tensile Strength: Yield (Proof), MPa 120
230

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 600
1380
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 110
21
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 9.1
2.3
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1170
130

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 110
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 28
18
Thermal Diffusivity, mm2/s 46
5.6
Thermal Shock Resistance, points 8.6
17

Alloy Composition

Aluminum (Al), % 90.5 to 95.5
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0 to 0.050
0 to 1.2
Iron (Fe), % 0 to 0.55
72.9 to 82
Magnesium (Mg), % 4.5 to 6.5
0
Manganese (Mn), % 0 to 0.45
0 to 1.0
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0