MakeItFrom.com
Menu (ESC)

EN AC-51400 Aluminum vs. EN 1.4618 Stainless Steel

EN AC-51400 aluminum belongs to the aluminum alloys classification, while EN 1.4618 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51400 aluminum and the bottom bar is EN 1.4618 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 71
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 3.4
51
Fatigue Strength, MPa 85
240 to 250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Tensile Strength: Ultimate (UTS), MPa 190
680 to 700
Tensile Strength: Yield (Proof), MPa 120
250 to 260

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 600
1360
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 9.1
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1170
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
270 to 280
Resilience: Unit (Modulus of Resilience), kJ/m3 110
160 to 170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 20
24 to 25
Strength to Weight: Bending, points 28
22 to 23
Thermal Diffusivity, mm2/s 46
4.0
Thermal Shock Resistance, points 8.6
15 to 16

Alloy Composition

Aluminum (Al), % 90.5 to 95.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 0 to 0.050
1.0 to 2.5
Iron (Fe), % 0 to 0.55
62.7 to 72.5
Magnesium (Mg), % 4.5 to 6.5
0
Manganese (Mn), % 0 to 0.45
5.5 to 9.5
Nickel (Ni), % 0
4.5 to 5.5
Nitrogen (N), % 0
0 to 0.15
Phosphorus (P), % 0
0 to 0.070
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0