MakeItFrom.com
Menu (ESC)

EN AC-51400 Aluminum vs. EN 1.5638 Steel

EN AC-51400 aluminum belongs to the aluminum alloys classification, while EN 1.5638 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51400 aluminum and the bottom bar is EN 1.5638 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 71
170
Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 3.4
23
Fatigue Strength, MPa 85
290
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Tensile Strength: Ultimate (UTS), MPa 190
580
Tensile Strength: Yield (Proof), MPa 120
410

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 110
52
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.0
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 9.1
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1170
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
120
Resilience: Unit (Modulus of Resilience), kJ/m3 110
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 20
20
Strength to Weight: Bending, points 28
20
Thermal Diffusivity, mm2/s 46
14
Thermal Shock Resistance, points 8.6
17

Alloy Composition

Aluminum (Al), % 90.5 to 95.5
0
Carbon (C), % 0
0.060 to 0.12
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.55
94.4 to 96.4
Magnesium (Mg), % 4.5 to 6.5
0
Manganese (Mn), % 0 to 0.45
0.5 to 0.8
Nickel (Ni), % 0
3.0 to 4.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 1.5
0 to 0.6
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0