MakeItFrom.com
Menu (ESC)

EN AC-51400 Aluminum vs. CC753S Brass

EN AC-51400 aluminum belongs to the aluminum alloys classification, while CC753S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51400 aluminum and the bottom bar is CC753S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 71
100
Elastic (Young's, Tensile) Modulus, GPa 67
100
Elongation at Break, % 3.4
17
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 25
40
Tensile Strength: Ultimate (UTS), MPa 190
340
Tensile Strength: Yield (Proof), MPa 120
170

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 640
820
Melting Onset (Solidus), °C 600
780
Specific Heat Capacity, J/kg-K 910
390
Thermal Conductivity, W/m-K 110
99
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
26
Electrical Conductivity: Equal Weight (Specific), % IACS 110
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 9.1
2.8
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1170
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
47
Resilience: Unit (Modulus of Resilience), kJ/m3 110
140
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 20
12
Strength to Weight: Bending, points 28
13
Thermal Diffusivity, mm2/s 46
32
Thermal Shock Resistance, points 8.6
11

Alloy Composition

Aluminum (Al), % 90.5 to 95.5
0.4 to 0.8
Antimony (Sb), % 0
0 to 0.050
Copper (Cu), % 0 to 0.050
56.8 to 60.5
Iron (Fe), % 0 to 0.55
0.5 to 0.8
Lead (Pb), % 0
1.8 to 2.5
Magnesium (Mg), % 4.5 to 6.5
0
Manganese (Mn), % 0 to 0.45
0 to 0.2
Nickel (Ni), % 0
0.5 to 1.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 1.5
0 to 0.050
Tin (Sn), % 0
0 to 0.8
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
33.1 to 40
Residuals, % 0 to 0.15
0