MakeItFrom.com
Menu (ESC)

EN AC-51400 Aluminum vs. Nickel 617

EN AC-51400 aluminum belongs to the aluminum alloys classification, while nickel 617 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51400 aluminum and the bottom bar is nickel 617.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 3.4
40
Fatigue Strength, MPa 85
220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
80
Tensile Strength: Ultimate (UTS), MPa 190
740
Tensile Strength: Yield (Proof), MPa 120
280

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 600
1330
Specific Heat Capacity, J/kg-K 910
450
Thermal Conductivity, W/m-K 110
13
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 9.1
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1170
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
230
Resilience: Unit (Modulus of Resilience), kJ/m3 110
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 20
24
Strength to Weight: Bending, points 28
21
Thermal Diffusivity, mm2/s 46
3.5
Thermal Shock Resistance, points 8.6
21

Alloy Composition

Aluminum (Al), % 90.5 to 95.5
0.8 to 1.5
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
20 to 24
Cobalt (Co), % 0
10 to 15
Copper (Cu), % 0 to 0.050
0 to 0.5
Iron (Fe), % 0 to 0.55
0 to 3.0
Magnesium (Mg), % 4.5 to 6.5
0
Manganese (Mn), % 0 to 0.45
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
44.5 to 62
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0