MakeItFrom.com
Menu (ESC)

EN AC-51400 Aluminum vs. SAE-AISI 4140 Steel

EN AC-51400 aluminum belongs to the aluminum alloys classification, while SAE-AISI 4140 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51400 aluminum and the bottom bar is SAE-AISI 4140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 71
200 to 310
Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 3.4
11 to 26
Fatigue Strength, MPa 85
360 to 650
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Tensile Strength: Ultimate (UTS), MPa 190
690 to 1080
Tensile Strength: Yield (Proof), MPa 120
590 to 990

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 110
43
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.4
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.1
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1170
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
74 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 110
920 to 2590
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 20
25 to 38
Strength to Weight: Bending, points 28
22 to 30
Thermal Diffusivity, mm2/s 46
12
Thermal Shock Resistance, points 8.6
20 to 32

Alloy Composition

Aluminum (Al), % 90.5 to 95.5
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.55
96.8 to 97.8
Magnesium (Mg), % 4.5 to 6.5
0
Manganese (Mn), % 0 to 0.45
0.75 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 1.5
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0