MakeItFrom.com
Menu (ESC)

EN AC-51400 Aluminum vs. C52100 Bronze

EN AC-51400 aluminum belongs to the aluminum alloys classification, while C52100 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51400 aluminum and the bottom bar is C52100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
110
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
41
Tensile Strength: Ultimate (UTS), MPa 190
380 to 800

Thermal Properties

Latent Heat of Fusion, J/g 400
200
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 640
1030
Melting Onset (Solidus), °C 600
880
Specific Heat Capacity, J/kg-K 910
370
Thermal Conductivity, W/m-K 110
62
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
13
Electrical Conductivity: Equal Weight (Specific), % IACS 110
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 9.1
3.4
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1170
370

Common Calculations

Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 20
12 to 25
Strength to Weight: Bending, points 28
13 to 22
Thermal Diffusivity, mm2/s 46
19
Thermal Shock Resistance, points 8.6
14 to 28

Alloy Composition

Aluminum (Al), % 90.5 to 95.5
0
Copper (Cu), % 0 to 0.050
89.8 to 93
Iron (Fe), % 0 to 0.55
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 4.5 to 6.5
0
Manganese (Mn), % 0 to 0.45
0
Phosphorus (P), % 0
0.030 to 0.35
Silicon (Si), % 0 to 1.5
0
Tin (Sn), % 0
7.0 to 9.0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 0.2
Residuals, % 0
0 to 0.5