MakeItFrom.com
Menu (ESC)

EN AC-51400 Aluminum vs. C52400 Bronze

EN AC-51400 aluminum belongs to the aluminum alloys classification, while C52400 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51400 aluminum and the bottom bar is C52400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
110
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
41
Tensile Strength: Ultimate (UTS), MPa 190
450 to 880

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
1000
Melting Onset (Solidus), °C 600
840
Specific Heat Capacity, J/kg-K 910
370
Thermal Conductivity, W/m-K 110
50
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
11
Electrical Conductivity: Equal Weight (Specific), % IACS 110
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
35
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 9.1
3.6
Embodied Energy, MJ/kg 150
58
Embodied Water, L/kg 1170
390

Common Calculations

Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 20
14 to 28
Strength to Weight: Bending, points 28
15 to 23
Thermal Diffusivity, mm2/s 46
15
Thermal Shock Resistance, points 8.6
17 to 32

Alloy Composition

Aluminum (Al), % 90.5 to 95.5
0
Copper (Cu), % 0 to 0.050
87.8 to 91
Iron (Fe), % 0 to 0.55
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 4.5 to 6.5
0
Manganese (Mn), % 0 to 0.45
0
Phosphorus (P), % 0
0.030 to 0.35
Silicon (Si), % 0 to 1.5
0
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 0.2
Residuals, % 0
0 to 0.5