MakeItFrom.com
Menu (ESC)

EN AC-51400 Aluminum vs. C93500 Bronze

EN AC-51400 aluminum belongs to the aluminum alloys classification, while C93500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51400 aluminum and the bottom bar is C93500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
100
Elongation at Break, % 3.4
15
Poisson's Ratio 0.33
0.35
Shear Modulus, GPa 25
38
Tensile Strength: Ultimate (UTS), MPa 190
220
Tensile Strength: Yield (Proof), MPa 120
110

Thermal Properties

Latent Heat of Fusion, J/g 400
180
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 640
1000
Melting Onset (Solidus), °C 600
850
Specific Heat Capacity, J/kg-K 910
360
Thermal Conductivity, W/m-K 110
70
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
15
Electrical Conductivity: Equal Weight (Specific), % IACS 110
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
9.0
Embodied Carbon, kg CO2/kg material 9.1
3.0
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1170
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
28
Resilience: Unit (Modulus of Resilience), kJ/m3 110
59
Stiffness to Weight: Axial, points 14
6.3
Stiffness to Weight: Bending, points 51
17
Strength to Weight: Axial, points 20
6.9
Strength to Weight: Bending, points 28
9.1
Thermal Diffusivity, mm2/s 46
22
Thermal Shock Resistance, points 8.6
8.5

Alloy Composition

Aluminum (Al), % 90.5 to 95.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.3
Copper (Cu), % 0 to 0.050
83 to 86
Iron (Fe), % 0 to 0.55
0 to 0.2
Lead (Pb), % 0
8.0 to 10
Magnesium (Mg), % 4.5 to 6.5
0
Manganese (Mn), % 0 to 0.45
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 1.5
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
4.3 to 6.0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 2.0
Residuals, % 0
0 to 1.0