MakeItFrom.com
Menu (ESC)

EN AC-51400 Aluminum vs. N06455 Nickel

EN AC-51400 aluminum belongs to the aluminum alloys classification, while N06455 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51400 aluminum and the bottom bar is N06455 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 3.4
47
Fatigue Strength, MPa 85
290
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
82
Tensile Strength: Ultimate (UTS), MPa 190
780
Tensile Strength: Yield (Proof), MPa 120
330

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 640
1510
Melting Onset (Solidus), °C 600
1450
Specific Heat Capacity, J/kg-K 910
430
Thermal Conductivity, W/m-K 110
10
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 9.1
12
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1170
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
300
Resilience: Unit (Modulus of Resilience), kJ/m3 110
260
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 20
24
Strength to Weight: Bending, points 28
21
Thermal Diffusivity, mm2/s 46
2.7
Thermal Shock Resistance, points 8.6
24

Alloy Composition

Aluminum (Al), % 90.5 to 95.5
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
14 to 18
Cobalt (Co), % 0
0 to 2.0
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.55
0 to 3.0
Magnesium (Mg), % 4.5 to 6.5
0
Manganese (Mn), % 0 to 0.45
0 to 1.0
Molybdenum (Mo), % 0
14 to 17
Nickel (Ni), % 0
58.1 to 72
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 0.080
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0 to 0.7
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0