MakeItFrom.com
Menu (ESC)

EN AC-51400 Aluminum vs. N06603 Nickel

EN AC-51400 aluminum belongs to the aluminum alloys classification, while N06603 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51400 aluminum and the bottom bar is N06603 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 3.4
28
Fatigue Strength, MPa 85
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
76
Tensile Strength: Ultimate (UTS), MPa 190
740
Tensile Strength: Yield (Proof), MPa 120
340

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 640
1340
Melting Onset (Solidus), °C 600
1300
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 110
11
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 9.1
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1170
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
170
Resilience: Unit (Modulus of Resilience), kJ/m3 110
300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 28
22
Thermal Diffusivity, mm2/s 46
2.9
Thermal Shock Resistance, points 8.6
20

Alloy Composition

Aluminum (Al), % 90.5 to 95.5
2.4 to 3.0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.050
0 to 0.5
Iron (Fe), % 0 to 0.55
8.0 to 11
Magnesium (Mg), % 4.5 to 6.5
0
Manganese (Mn), % 0 to 0.45
0 to 0.15
Nickel (Ni), % 0
57.7 to 65.6
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0 to 1.5
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0.010 to 0.25
Yttrium (Y), % 0
0.010 to 0.15
Zinc (Zn), % 0 to 0.1
0.010 to 0.1
Residuals, % 0 to 0.15
0