MakeItFrom.com
Menu (ESC)

EN AC-51400 Aluminum vs. S35500 Stainless Steel

EN AC-51400 aluminum belongs to the aluminum alloys classification, while S35500 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51400 aluminum and the bottom bar is S35500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 3.4
14
Fatigue Strength, MPa 85
690 to 730
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
78
Tensile Strength: Ultimate (UTS), MPa 190
1330 to 1490
Tensile Strength: Yield (Proof), MPa 120
1200 to 1280

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.1
3.5
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1170
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 110
3610 to 4100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 20
47 to 53
Strength to Weight: Bending, points 28
34 to 37
Thermal Diffusivity, mm2/s 46
4.4
Thermal Shock Resistance, points 8.6
44 to 49

Alloy Composition

Aluminum (Al), % 90.5 to 95.5
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
15 to 16
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.55
73.2 to 77.7
Magnesium (Mg), % 4.5 to 6.5
0
Manganese (Mn), % 0 to 0.45
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 0
4.0 to 5.0
Niobium (Nb), % 0
0.1 to 0.5
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0