MakeItFrom.com
Menu (ESC)

EN AC-51400 Aluminum vs. S44735 Stainless Steel

EN AC-51400 aluminum belongs to the aluminum alloys classification, while S44735 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51400 aluminum and the bottom bar is S44735 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 71
220
Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 3.4
21
Fatigue Strength, MPa 85
300
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 25
82
Tensile Strength: Ultimate (UTS), MPa 190
630
Tensile Strength: Yield (Proof), MPa 120
460

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 910
480
Thermal Expansion, µm/m-K 23
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
21
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 9.1
4.4
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1170
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
120
Resilience: Unit (Modulus of Resilience), kJ/m3 110
520
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
26
Strength to Weight: Axial, points 20
23
Strength to Weight: Bending, points 28
21
Thermal Shock Resistance, points 8.6
20

Alloy Composition

Aluminum (Al), % 90.5 to 95.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.55
60.7 to 68.4
Magnesium (Mg), % 4.5 to 6.5
0
Manganese (Mn), % 0 to 0.45
0 to 1.0
Molybdenum (Mo), % 0
3.6 to 4.2
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0.2 to 1.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0