MakeItFrom.com
Menu (ESC)

EN AC-51500 Aluminum vs. ASTM A387 Grade 21L Class 1

EN AC-51500 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 21L class 1 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51500 aluminum and the bottom bar is ASTM A387 grade 21L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
150
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 5.6
21
Fatigue Strength, MPa 120
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 280
500
Tensile Strength: Yield (Proof), MPa 160
230

Thermal Properties

Latent Heat of Fusion, J/g 430
260
Maximum Temperature: Mechanical, °C 170
480
Melting Completion (Liquidus), °C 630
1470
Melting Onset (Solidus), °C 590
1430
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 120
41
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 88
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.1
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 9.0
1.8
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1150
62

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13
84
Resilience: Unit (Modulus of Resilience), kJ/m3 190
140
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 29
18
Strength to Weight: Bending, points 36
18
Thermal Diffusivity, mm2/s 49
11
Thermal Shock Resistance, points 13
14

Alloy Composition

Aluminum (Al), % 89.8 to 93.1
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
2.8 to 3.3
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.25
94.4 to 96.1
Magnesium (Mg), % 4.7 to 6.0
0
Manganese (Mn), % 0.4 to 0.8
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 1.8 to 2.6
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.15
0