MakeItFrom.com
Menu (ESC)

EN AC-51500 Aluminum vs. EN 1.4568 Stainless Steel

EN AC-51500 aluminum belongs to the aluminum alloys classification, while EN 1.4568 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51500 aluminum and the bottom bar is EN 1.4568 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 5.6
2.3 to 21
Fatigue Strength, MPa 120
220 to 670
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 280
830 to 1620
Tensile Strength: Yield (Proof), MPa 160
330 to 1490

Thermal Properties

Latent Heat of Fusion, J/g 430
280
Maximum Temperature: Mechanical, °C 170
890
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 590
1380
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 88
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 9.0
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1150
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13
36 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 190
290 to 5710
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 29
30 to 58
Strength to Weight: Bending, points 36
25 to 40
Thermal Diffusivity, mm2/s 49
4.3
Thermal Shock Resistance, points 13
23 to 46

Alloy Composition

Aluminum (Al), % 89.8 to 93.1
0.7 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.25
70.9 to 76.8
Magnesium (Mg), % 4.7 to 6.0
0
Manganese (Mn), % 0.4 to 0.8
0 to 1.0
Nickel (Ni), % 0
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.8 to 2.6
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.15
0