MakeItFrom.com
Menu (ESC)

EN AC-51500 Aluminum vs. EN 1.7703 Steel

EN AC-51500 aluminum belongs to the aluminum alloys classification, while EN 1.7703 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51500 aluminum and the bottom bar is EN 1.7703 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 5.6
20
Fatigue Strength, MPa 120
320 to 340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 280
670 to 690
Tensile Strength: Yield (Proof), MPa 160
460 to 500

Thermal Properties

Latent Heat of Fusion, J/g 430
250
Maximum Temperature: Mechanical, °C 170
460
Melting Completion (Liquidus), °C 630
1470
Melting Onset (Solidus), °C 590
1430
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 120
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 88
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.2
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 9.0
2.5
Embodied Energy, MJ/kg 150
35
Embodied Water, L/kg 1150
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 190
570 to 650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 29
24
Strength to Weight: Bending, points 36
22
Thermal Diffusivity, mm2/s 49
11
Thermal Shock Resistance, points 13
19 to 20

Alloy Composition

Aluminum (Al), % 89.8 to 93.1
0
Carbon (C), % 0
0.11 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 0 to 0.050
0 to 0.2
Iron (Fe), % 0 to 0.25
94.6 to 96.4
Magnesium (Mg), % 4.7 to 6.0
0
Manganese (Mn), % 0.4 to 0.8
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 1.8 to 2.6
0 to 0.1
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.25
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.15
0