MakeItFrom.com
Menu (ESC)

EN AC-51500 Aluminum vs. C51100 Bronze

EN AC-51500 aluminum belongs to the aluminum alloys classification, while C51100 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51500 aluminum and the bottom bar is C51100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 5.6
2.5 to 50
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
42
Tensile Strength: Ultimate (UTS), MPa 280
330 to 720
Tensile Strength: Yield (Proof), MPa 160
93 to 700

Thermal Properties

Latent Heat of Fusion, J/g 430
200
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 630
1060
Melting Onset (Solidus), °C 590
970
Specific Heat Capacity, J/kg-K 910
380
Thermal Conductivity, W/m-K 120
84
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
20
Electrical Conductivity: Equal Weight (Specific), % IACS 88
20

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
32
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 9.0
3.0
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1150
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13
18 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 190
38 to 2170
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 52
18
Strength to Weight: Axial, points 29
10 to 22
Strength to Weight: Bending, points 36
12 to 20
Thermal Diffusivity, mm2/s 49
25
Thermal Shock Resistance, points 13
12 to 26

Alloy Composition

Aluminum (Al), % 89.8 to 93.1
0
Copper (Cu), % 0 to 0.050
93.8 to 96.5
Iron (Fe), % 0 to 0.25
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 4.7 to 6.0
0
Manganese (Mn), % 0.4 to 0.8
0
Phosphorus (P), % 0
0.030 to 0.35
Silicon (Si), % 1.8 to 2.6
0
Tin (Sn), % 0
3.5 to 4.9
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.070
0 to 0.3
Residuals, % 0
0 to 0.5