MakeItFrom.com
Menu (ESC)

EN AC-51500 Aluminum vs. N06975 Nickel

EN AC-51500 aluminum belongs to the aluminum alloys classification, while N06975 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51500 aluminum and the bottom bar is N06975 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 5.6
45
Fatigue Strength, MPa 120
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 280
660
Tensile Strength: Yield (Proof), MPa 160
250

Thermal Properties

Latent Heat of Fusion, J/g 430
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 590
1380
Specific Heat Capacity, J/kg-K 910
460
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.6
8.3
Embodied Carbon, kg CO2/kg material 9.0
8.9
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1150
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13
240
Resilience: Unit (Modulus of Resilience), kJ/m3 190
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 29
22
Strength to Weight: Bending, points 36
20
Thermal Shock Resistance, points 13
18

Alloy Composition

Aluminum (Al), % 89.8 to 93.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 0 to 0.050
0.7 to 1.2
Iron (Fe), % 0 to 0.25
10.2 to 23.6
Magnesium (Mg), % 4.7 to 6.0
0
Manganese (Mn), % 0.4 to 0.8
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 7.0
Nickel (Ni), % 0
47 to 52
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 1.8 to 2.6
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0.7 to 1.5
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.15
0