MakeItFrom.com
Menu (ESC)

EN AC-51500 Aluminum vs. S20161 Stainless Steel

EN AC-51500 aluminum belongs to the aluminum alloys classification, while S20161 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51500 aluminum and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
250
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 5.6
46
Fatigue Strength, MPa 120
360
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 280
980
Tensile Strength: Yield (Proof), MPa 160
390

Thermal Properties

Latent Heat of Fusion, J/g 430
330
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 630
1380
Melting Onset (Solidus), °C 590
1330
Specific Heat Capacity, J/kg-K 910
490
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 88
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.6
7.5
Embodied Carbon, kg CO2/kg material 9.0
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1150
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13
360
Resilience: Unit (Modulus of Resilience), kJ/m3 190
390
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 52
26
Strength to Weight: Axial, points 29
36
Strength to Weight: Bending, points 36
29
Thermal Diffusivity, mm2/s 49
4.0
Thermal Shock Resistance, points 13
22

Alloy Composition

Aluminum (Al), % 89.8 to 93.1
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
15 to 18
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.25
65.6 to 73.9
Magnesium (Mg), % 4.7 to 6.0
0
Manganese (Mn), % 0.4 to 0.8
4.0 to 6.0
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.8 to 2.6
3.0 to 4.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.15
0